Validating Gravity-Based Market Share Models Using Large-Scale Transactional Data
نویسندگان
چکیده
منابع مشابه
An Efficient Data Replication Strategy in Large-Scale Data Grid Environments Based on Availability and Popularity
The data grid technology, which uses the scale of the Internet to solve storage limitation for the huge amount of data, has become one of the hot research topics. Recently, data replication strategies have been widely employed in distributed environment to copy frequently accessed data in suitable sites. The primary purposes are shortening distance of file transmission and achieving files from ...
متن کاملMining Market Basket Data Using Share Measures and Characterized Itemsets
Abs t r ac t . We propose the share-confidence framework for knowledge discovery from databases which addresses the problem of mining itemsets from market basket data. Our goal is two-fold: (1) to present new itemset measures which are practical and useful alternatives to the commonly used support measure; (2) to not only discover the buying patterns of customers, but also to discover customer ...
متن کاملStochastic Relational Models for Large-scale Dyadic Data using MCMC
Stochastic relational models (SRMs) [15] provide a rich family of choices for learning and predicting dyadic data between two sets of entities. The models generalize matrix factorization to a supervised learning problem that utilizes attributes of entities in a hierarchical Bayesian framework. Previously variational Bayes inference was applied for SRMs, which is, however, not scalable when the ...
متن کاملAccess control in ultra-large-scale systems using a data-centric middleware
The primary characteristic of an Ultra-Large-Scale (ULS) system is ultra-large size on any related dimension. A ULS system is generally considered as a system-of-systems with heterogeneous nodes and autonomous domains. As the size of a system-of-systems grows, and interoperability demand between sub-systems is increased, achieving more scalable and dynamic access control system becomes an im...
متن کاملNieme - Large-Scale Energy-Based Models Nieme: Large-Scale Energy-Based Models
In this paper we introduce Nieme, a machine learning library for large-scale classification, regression and ranking. Nieme relies on the framework of energy-based models (LeCun et al., 2006) which unifies several learning algorithms ranging from simple perceptrons to recent models such as the pegasos support vector machine or l1-regularized maximum entropy models. This framework also unifies ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Big Data
سال: 2021
ISSN: 2167-6461,2167-647X
DOI: 10.1089/big.2020.0161